Extensions 1→N→G→Q→1 with N=C42 and Q=S3

Direct product G=NxQ with N=C42 and Q=S3
dρLabelID
S3xC4248S3xC4^296,78

Semidirect products G=N:Q with N=C42 and Q=S3
extensionφ:Q→Aut NdρLabelID
C42:S3 = C42:S3φ: S3/C1S3 ⊆ Aut C42123C4^2:S396,64
C42:2S3 = C42:2S3φ: S3/C3C2 ⊆ Aut C4248C4^2:2S396,79
C42:3S3 = C42:3S3φ: S3/C3C2 ⊆ Aut C4248C4^2:3S396,83
C42:4S3 = C42:4S3φ: S3/C3C2 ⊆ Aut C42242C4^2:4S396,12
C42:5S3 = C4xD12φ: S3/C3C2 ⊆ Aut C4248C4^2:5S396,80
C42:6S3 = C4:D12φ: S3/C3C2 ⊆ Aut C4248C4^2:6S396,81
C42:7S3 = C42:7S3φ: S3/C3C2 ⊆ Aut C4248C4^2:7S396,82

Non-split extensions G=N.Q with N=C42 and Q=S3
extensionφ:Q→Aut NdρLabelID
C42.1S3 = C42.S3φ: S3/C3C2 ⊆ Aut C4296C4^2.1S396,10
C42.2S3 = C12:C8φ: S3/C3C2 ⊆ Aut C4296C4^2.2S396,11
C42.3S3 = C4xDic6φ: S3/C3C2 ⊆ Aut C4296C4^2.3S396,75
C42.4S3 = C12:2Q8φ: S3/C3C2 ⊆ Aut C4296C4^2.4S396,76
C42.5S3 = C12.6Q8φ: S3/C3C2 ⊆ Aut C4296C4^2.5S396,77
C42.6S3 = C4xC3:C8central extension (φ=1)96C4^2.6S396,9

׿
x
:
Z
F
o
wr
Q
<