Extensions 1→N→G→Q→1 with N=C42 and Q=S3

Direct product G=N×Q with N=C42 and Q=S3
dρLabelID
S3×C4248S3xC4^296,78

Semidirect products G=N:Q with N=C42 and Q=S3
extensionφ:Q→Aut NdρLabelID
C42⋊S3 = C42⋊S3φ: S3/C1S3 ⊆ Aut C42123C4^2:S396,64
C422S3 = C422S3φ: S3/C3C2 ⊆ Aut C4248C4^2:2S396,79
C423S3 = C423S3φ: S3/C3C2 ⊆ Aut C4248C4^2:3S396,83
C424S3 = C424S3φ: S3/C3C2 ⊆ Aut C42242C4^2:4S396,12
C425S3 = C4×D12φ: S3/C3C2 ⊆ Aut C4248C4^2:5S396,80
C426S3 = C4⋊D12φ: S3/C3C2 ⊆ Aut C4248C4^2:6S396,81
C427S3 = C427S3φ: S3/C3C2 ⊆ Aut C4248C4^2:7S396,82

Non-split extensions G=N.Q with N=C42 and Q=S3
extensionφ:Q→Aut NdρLabelID
C42.1S3 = C42.S3φ: S3/C3C2 ⊆ Aut C4296C4^2.1S396,10
C42.2S3 = C12⋊C8φ: S3/C3C2 ⊆ Aut C4296C4^2.2S396,11
C42.3S3 = C4×Dic6φ: S3/C3C2 ⊆ Aut C4296C4^2.3S396,75
C42.4S3 = C122Q8φ: S3/C3C2 ⊆ Aut C4296C4^2.4S396,76
C42.5S3 = C12.6Q8φ: S3/C3C2 ⊆ Aut C4296C4^2.5S396,77
C42.6S3 = C4×C3⋊C8central extension (φ=1)96C4^2.6S396,9

׿
×
𝔽